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Abstract

A four-parameter putential is analyzed, which contains the three dimensi¢m_ harmonic

oscillator as a special case. This potential is exactly solvable and retains several characteris-

tics of the harmonic oscillator, and also of the Coulomb problem. The possibility of similar

generalizations of other potentials is also pointed out.

1 Introduction

Searching for exact solutions of the SchrSdinger equation has been an interesting challenge since

the early period of quantum mechanics. This classic area has gained new momentum from the

recent introduction of SUl)ersymmetric quantum mechanics (SUSYQM) [1], which relates pairs of

essentially isospectral potent|Ms to each other by means of (super)algebraic manipulations. (See,

for example [2] for a recent review on SUSYQM, and [3] and ,'eferences for its relation to other

methods of analyzing isospectral potentials.) This new approach helped to view old problems

from a new angle, and allowed unified, systematic treatment of previously unrelated results. New

solutions of the SchrSdinger equation have been described and classified, together with already

known ones. The most well-known potentials have been shown to have the property of shape

invariance [4], a concept introduced in SUSYQM. Much less is known, however, about the more

general Natanzon t)otentials [5], which are, in principle, solvable, nevertheless their I)ractical use

is hindered I)y their COml)licated mathematical structure. The techniques inspired by SIISYQM

allow a straightforward generalization of the silnl)lest shape invariant potentials, while avoiding;

most of the mathematical complications characterizing the general Natanzon potentials.

Here l discuss a l)otential which can be considered the simultaneous generalization of the three

dimensional harmonic oscillator and (!oulomb potentials: these tw() shape invariant potentials

can be obtained from it by tuning one of its four parameters. Its (:ouloml) limit has ah'eady

been described [6], and here I discuss its connection with the harmonic oscillator. In contrast

with other anharmonic oscillators, this potential converges to a finite value in the r ---+oo limit.

It also inherited several characteristics from its two "l)ar(mt potentials", which |nay enable its

applications t() physical l)roblems, where deviations from these two fund_tmenlal pot.entia]s are

relevant.

|n Section 2. I give a I)rief account of a simple 1)rocedure which can be used to deriw' exactly

solvablel)otentials. Section 3. contains the main results of this colltrib_ltion, while in Section 4.

a summary is given and directions towards luther investigations arc pointed out.
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2 Transformations of the SchrSdinger Equation

Here I describe an old method of solving tile Schr6dinger equation to demonstrate how a wide

range of solvable potentials call be derived ill a relatively straightforward way. Originally this

procedure was used [7] to derive only some well-known potentials, but it can be shown that the

general Natanzon potentials can also be derived from it. This proce{ture was also connected to

tile formalism of SUSYQM [8].

The solutim'ls of the one dimensional SchrSdinger equation (with h = 2m = 1)

d2_

d:,--7 + (E - V(x))*(z) = 0 (1)

are generally written as

_(x) = f(x)F(g(x)),

where F(g) is a special function which satisfies a second order differential equation

(2)

d2F (It"

dq_ + q(J)(-a7 + ,¢(:_)F(,_) 0. (a)

Here Q(g) and R(g) are well-known for any specified special function F(g), while f(x) and g(x)

are some functions to be determined. Substit,_ting (2) in (1) and (:on,paring the results with (3)

we arriw_ at the following expression [8] after some straightforward algebra:

E ( )2fl'(x) 4 _] + (fl (:,:)).2 R(g(x)) "21dQ(g)dfl : Q2(g(x)) . (4)

Eq. (4) relates the only undetermined function .q(.,') to the dill'eren,'o of the energy E and the

potential V(x). Observing that the energy term 1:7on the left handside of Eq. (4) represents

a constant, tile authors of Ref. [7] equated certain terms of tile right-handside with a constant

to account for it. This results simple ditt'erential e(luati(,ns for _j(.r). The authors in Ref. [7]

applied this method to tile hyl)ergeometric and c()ntluenl hyl)ergeometric t'_lncti(,l_ and obtained

the solutions of some simple potentials.

Considering the particular example of the confluent hyt)ergeometric function F(-n,/3; g(x))

and introducing the simple g(x) = ph(x) substitution we get

&-V(x) h,,,(x)

+ h(x) p "+ -(h'(*)VP_ (_"(_))_/_ _--- "T + (h(.)) _ _ " (5)

Identifying one of the last three terms on the right hand side of Eq. (5) with a constant, the three

shape-invariant potentials of the confluent hyl)ergeometric case, the three-dimensional harmonic

oscillator, the Coulomb problem and the Morse potential, are recovered. These potentials appear

in the radial SchrSdinger equation, therefore in what follows I shall replace x with r.
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3 Generalization of the Harmonic Oscillator Potential

A straightforward way of generalizing tile simplest possible solvable potentials to more general

ones is identifying combinations of several terms on the right-hand side of (5) with a constant.

This procedure recovers the Natanzon confluent potentials [5], the solutions of which contain

confluent lwpergeometric functions. The most general six-parameter version of these potentials

can be obtained by considering the combination of all three terms on the right-hand side of (5),

which explicitly contain parameters, however, the technicM difficulties increase considerably in

this case. The problem remains relatively easy to handle if we take the colnbination of two such

terlns only. Considering the differential equation

(h'(x))_ _+ = c (6)

corresponds to "mixing" the harmonic oscillator and the Coulomb potentials: 0 -+ 0 recovers the

latter one [6], while 0 --+ oo combined with C = C0 yields the former one. (See Eq. (5)). The

Coulomb limit has been discussed in detail in Ref. [6], and here we focus on the harmonic oscillator

limit. The potential described here and ill Ref. [6] is essentially the same for any finit(, value of 0,

nevertheless, it is more convenient to use different notations when we discuss its COlm(,(:tion to the

two limiting case. In order to make the formalism of the two limits comt)atibh, with each other.

here we follow the notations of Ref. [6] as closely as possible.

As described in [6], the differential equation (6) can be solved exl)licitly for the inverse r(h

function only:

, .,,+(0,,+t+,,,,' \t, +0/ / . (7)

This fimction, of course, can be used to determine h(r) as well to any desire(I accuracy.
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FIG. 1. The h(r) function defined by Eq. (7), displayed for 0 = 0.1, 1, 10, 100, (x_

and C = I. (C, urves lying higher correspond to higher value of 0.)
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We have plotted h(r) ill Fig. 1. for several values of tile parameter 0. As discussed ill Ref. [6],

h(r) can be approximated by (',,'2/4 near the origin, and asymptotically follows h(,') -+ (CO)l�2, •

ill the 7"-+ oo limit, which correspond to tile h(r) functions characterizing the. lmrmoni(" oscillator

and Coulomb problems, resl>ectiw_ly. (See e.g. Ref. [8].) Tile range of tile transition between

these two regions is governed by the 0 t)arameter: it moves towards larger values of r as 0 increases

(see Fig. 1.), and disappears completely in the 0 --+ oo (harlnonic oscillator) limit.

Substituting h(r) into (5) att(t removing tile u-dependence from the potential terms by intro-

ducing the constant

D=-_--+_ n+ (8)

(which amounts to a specific choice of p - p,_,) we arrive at the following potentiM

l + _o + /¢- 3- 4h,(r)(1 +

3_ 50
+ (9)

160 (1 + +_o-_) h-_3o_)32 160 (1 +

and energy eigenva.lues

E,: = c?(2,, + ;_) b_ "+ + _ - f '_ + • (10)

These formulas differ from tile corresponding ()ties in Ref. [6] only in a shift of the energy scale

and in the usage of slightly different parameters. Tile changes reflect the difference between the

(:oulomb and harmonic oscillator linfits of tile general l)rol)lem containing I)oth potentials as a

special case. These differences, however, do not essentially influence the form of the wavefunctions:

%(,.) (71/"/_,+'( r(, + !3) )t/2r(/_) ,,!((/_ + 2,00-' + p,,)

x(1 + h(,')/O)t/4(h(,'))_exp (-P@h(r)] F(
\ Z /

-,_,3;p,,h(,')). (11)

(Here and in Eq. (10) _ denotes the nunlber of nodes in tile radial wavefunction.)

As we can expect fi'om (6), these formulas reduce to the corresponding ones for the harmonic

oscillator in the 0 -+ oc limit, if we introdu('e the notati(m w = _/2 and 1 = ,/3 -3/2. In

t)articular, tit(' two last terms in (9) vanish and the first and second terms transform into tile

harnlonic oscillator and centrifugal terms, respectively. We have displayed V(r) and the position of

some of the lowest- lying energy eigenvalues in Fig. 2. f()r some values of parameter 0. As it can be

seen there, the oscillator character of the l)otential strenghtens with increasing 0. V(r) is oscillator-

like near the origin, and approximates tile Coulomb potential (with Ze 2 = C_/2D03/2) for large r.

The domain of oscillator-like behavior expands with increasing 0: this is related to the structure

of h(r) discussed previously. (See also Fig. 1.) Also, the energy spectrum is oscillator-like for

small values of 7_, and (1ouloml>-like for large n: E, converges to En--.o+ = V(r -+ co) = CDO.

See Ref. [6] for a more detailed description of V(r) in terms of powers of r.
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FIG. 2. Potential V(r) ill Eq. (9) dist)layed together with the lowest-lying energy

levels for 0 = 1, 10, 100 and c_. Tile other parameters are C = l, D = 5 and /3 = 1.,5

in all cases. V(r _ oc) = CDO ill each case.

Similarly to the Coulomb limit discussed in [6], this potential can be rewritten into the sum

of a central, centrifitgal and /-dependent part:

v(,.) = Vo(,.)+ _4(,)+
l(l+ 1)

7,2 *
(i2)
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where

and

-- h(,,) :30 5d
I/})(r)= (TD1 + h(r)/O 160(1 + h(r)/O) 2 + 160(1 + h(r)/O) 3' (13)

Vt(r)-/(/+l) ( Cr2 ) l(l + l)v(r). (14)r 2 4h(r)(1 + h(,')/O) - 1 - _7

The definition of l is, however, different in the two limits: I =/3/2 - 1 for tile Coulomb [6], and

l =/3 -3/2 for the oscillator limit. (Fig. 2. displays potentials with l = 0 only.) Also in contrast

with the Coulomb limit, v(r) in Eq. (14) does not vanish for large values of r, rather it goes to

the value -3/4. This, again, is the consequence of the asymptotical Coulomb-like character of

v(,.).
It is remarkable, that E,_ depends on the combination 2n +/3 only (i.e. on 2n + l + :]/2

in the oscillator limit), therefine the generalized harmonic oscillator potential has a degeneracy

pattern similar to that of the harmonic oscillator. In other words, the terms representing the

anharmonicity do not remow- the degeneracy of the energy Levels.

This generalization of the harmonic oscillator potential could be applied to physical problems,

where an attractiw, ('_oulomb potential is distorted by an oscillator-like potential COml)onent for

small values of r. This is the case, for example, for a finite, homogenous, spherical charge distri-

bution, but in that case the resulting potential can strictly be separated into two domains, where

it exactly folh,ws 7'_ like and r -1 like behavour. The potential discussed here can be considered a

deviation from this simple model problem. An example for a similar situation is discussed in Ref.

[9] in connection with a potential experienced by electrons in certain crystal environments.

Finally, there are some other potentials occupying a similar intermediate position between the

simple shape invariant potentials and the general Natanzon potentials. Some of these, like the

Woods-Saxon [10] and Ginocchio [11] potentials have been found earlier, while some others, the

"PIII" [12] potential and those in t/efs. [13,14,15] have l)een identified only recently, mainly in

Sl_SYQM --related studies. See Ref. [6] for more details.

4 Summary

Here I have analyzed a four-parameter potential, which contains both the harmonic oscillator and

the (',ouloml) potential as special cases. I have interpreted this potential as the generalization of

the harmonic oscillator potential, and have established that it is a special admixture of a long-

range attractive (',oulomb term, and an oscillator-like term near the origin. This is also reflected

in the structure of the energy spectrum.

Exact analytical solution of the radial Schrgdinger equation can be obtained for any partial

wave, however, an angular-nloment,n/ dependent term appears for 1 ¢ 0. A remarkable finding

is that the anharmonicity appearing in the general form of the potential does not remove the

degeneracy of tile energy levels.

Similar generalizations of the harmonic oscillator and other well-known potentials are also

possible by considering further simple differential equations similar to that in Eq. (6). These

subclasses of the Natanzon l)otentials seem to be suitable for applications, because they have
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more flexible shal)O than the simplest solvahle ln,tentials, but may still remain relatively simple

to handle mathematically.
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